ГОСУДАРСТВЕННОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ТУЛЬСКОЙ ОБЛАСТИ «ТУЛЬСКИЙ ЭКОНОМИЧЕСКИЙ КОЛЛЕДЖ»

УТВЕРЖДАЮ Директор ПОУТО «ТЭК» А.В. Макарова Приказ № 266 «7«27» августа 2021 года

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ ОУД.09 ХИМИЯ

ПРОГРАММА ПОДГОТОВКИ КВАЛИФИЦИРОВАННЫХ РАБОЧИХ И СЛУЖАЩИХ ПО ПРОФЕССИИ СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ 54.01.20 ГРАФИЧЕСКИЙ ДИЗАЙНЕР

Рассмотрено и одобрено на заседании ПЦК №1 общеобразовательных дисциплин Протокол №1 от 27 августа 2021 г.
Председатель ПЦК №1

М.И. Хейфец

Составлена в соответствии с рекомендациями Департамента государственной политики в сфере подготовки рабочих кадров и ДПО по получения среднего общего организации образования пределах В освоения образовательных программ среднего профессионального образования на базе основного общего образования с учетом требований федеральных государственных образовательных стандартов и получаемой специальности профессии или среднего профессионального образования.

Заместитель директора по УР

Е. В. Кошелева

27 августа 2021 г.

Автор:

Андриянова Л.В.— преподаватель Государственного профессионального образовательного учреждения Тульской области «Тульский экономический колледж».

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Программа общеобразовательной учебной дисциплины «Химия» предназначена для изучения химии в профессиональных образовательных организациях СПО, реализующих образовательную программу среднего общего образования в пределах освоения основной профессиональной образовательной программы СПО (ОПОП СПО) на базе основного общего образований при подготовке квалифицированных рабочих, служащих.

Программа разработана на основе требований ФГОС среднего общего образования, предъявляемых к структуре, содержанию и результатам освоения учебной дисциплины «Химия», в соответствии с Рекомендациями по организации получения среднего общего образования в пределах освоения образовательных программ среднего профессионального образования на базе основного общего образования с учетом требований федеральных государственных образовательных стандартов и получаемой профессии или специальности среднего профессионального образования (письмо Департамента государственной политики в сфере подготовки рабочих кадров и ДПО Минобрнауки России от 17.03.2015 № 06-259).

Содержание программы «Химия» направлено на достижение следующих целей:

- формирование у обучающихся умения оценивать значимость химического знания для каждого человека;
- формирование у обучающихся целостного представления о мире и роли химии в создании современной естественно-научной картины мира; умения объяснять объекты и процессы окружающей действительности; природной, социальной, культурной, технической среды, используя для этого химические знания;
- развитие у обучающихся умений различать факты и оценки, сравнивать оценочные выводы, видеть их связь с критериями оценок и связь критериев с определенной системой ценностей, формулировать и обосновывать собственную позицию;
- приобретение обучающимися опыта разнообразной деятельности, познания и самопознания; ключевых навыков, имеющих универсальное значение для различных видов деятельности (навыков решения проблем, принятия решений, поиска, анализа и обработки информации, коммуникативных навыков, навыков измерений, сотрудничества, безопасного обращения с веществами в повседневной жизни).

В программу включено содержание, направленное на формирование у студентов компетенций, необходимых для качественного освоения ОПОП СПО на базе основного общего образования с получением среднего общего образования; программы подготовки квалифицированных рабочих, служащих (ППКРС).

ОБЩАЯХАРАКТЕРИСТИКАУЧЕБНОЙДИСЦИПЛИНЫ«ХИМИЯ»

Химия — это наука о веществах, их составе и строении, свойствах и превращениях, значении химических веществ, материалов и процессов в практической деятельности человека.

Содержание общеобразовательной учебной дисциплины «Химия» направлено на усвоение обучающимися основных понятий, законов и теорий химии; овладение умениями наблюдать химические явления, проводить химический эксперимент, производить расчеты на основе химических формул веществ и уравнений химических реакций.

В процессе изучения химии, у обучающихся развиваются познавательные интересы и интеллектуальные способности, потребности в самостоятельном приобретения знаний по химии в соответствии с возникающими жизненными проблемами, воспитывается бережное отношения к природе, понимание здорового образа жизни, необходимости предупреждения явлений, наносящих вред здоровью и окружающей среде. Они осваивают приемы грамотного, безопасного использования химических веществ и материалов, применяемых в быту, сельском хозяйстве и на производстве.

При структурировании содержания общеобразовательной учебной дисциплины для профессиональных образовательных организаций, реализующих образовательную программу среднего общего образования в пределах освоения ОПОП ОПО на базе основного общего образования, учитывалась объективная реальность — небольшой объем часов, отпущенных на изучение химии и стремление максимальносоответствовать идеям развивающего обучения. Поэтому теоретические вопросы максимально смещены к началу изучения дисциплины, с тем, чтобы последующий фактический материал рассматривался на основе изученных теорий.

Реализация дедуктивного подхода к изучению химии способствует развитию таких логических операций мышления, как анализ и синтез, обобщение и конкретизация, сравнение и аналогия, систематизация и классификация и др.

Изучение химии в профессиональных образовательных организациях, реализующих образовательную программу среднего общего образования в пределах освоения ОПОП СПО на базе основного общего образования, имеет свои особенности в зависимости от профиля профессионального образования. Это выражается в содержании обучения, количестве часов, выделяемых на изучение отдельных тем программы, глубине их освоения обучающимися, объеме и характере практических занятий, видах внеаудиторной самостоятельной работы студентов.

При освоении профессий СПО естественно-научного профиля профессионального образования химия изучается более углубленно как профильная учебная дисциплина.

Специфика изучения химии при овладении профессиями естественно-научного профиля отражена в каждой теме раздела «Содержание учебной дисциплины» в рубрике «Профильные и профессионально значимые элементы содержания». Этот компонент реализуется при индивидуальной самостоятельной работе обучающихся (написании рефератов, подготовке сообщений, защите проектов), в процессе учебной деятельности под руководством преподавателя (выполнении химического эксперимента — лабораторных опытов и практических работ, решении практико-ориентированных расчетных задач и т.д.).

В процессе изучения химии теоретические сведения дополняются демонстрациями, лабораторными опытами и практическими занятиями. Значительное место отводится химическому эксперименту. Он открывает возможность формировать у обучающихся специальные предметные умения: работать с веществами, выполнять простые химические опыты, учить безопасному и экологически грамотному обращению с веществами, материалами и процессами в быту и на производстве.

Для организации внеаудиторной самостоятельной работы студентов, овладевающих профессиями СПО естественно-научного профиля профессионального образования, представлен примерный перечень рефератов (докладов), индивидуальных проектов.

В процессе изучения химии важно формировать информационную компетентность обучающихся. Поэтому при организации самостоятельной работы необходимо акцентировать внимание обучающихся на поиске информации в средствах массмедиа, Интернете, учебной и специальной литературе с соответствующим оформлением и представлением результатов.

Изучение общеобразовательной учебной дисциплины «Химия» завершается подведением итогов в форме дифференцированного зачета в рамках промежуточной аттестации студентов в процессе освоения ОПОП СПО с получением среднего общего образования (ППКРС.).

МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В УЧЕБНОМ ПЛАНЕ

Учебная дисциплина «Химия» является учебным предметом по выбору из обязательной предметной области «Естественные науки» ФГОС среднего общего образования.

В профессиональных образовательных организациях, реализующих образовательную программу среднего общего образования в пределах освоения ОПОП СПО на базе основного общего образования, учебная дисциплина «Химия» изучается в общеобразовательном цикле учебного ОПОП СПО на базе основного общего образования с получением среднего общего образования (ППКРС).

В учебных планах ППКРС место учебной дисциплины «Химия» — в составе общеобразовательных учебных дисциплин по выбору, формируемых из обязательных предметных областей ФГОС среднего общего образования, для профессий СПО соответствующего профиля профессионального образования.

РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Освоение содержания учебной дисциплины «Химия», обеспечивает достижение студентами следующих результатов:

• личностных:

- чувство гордостииуважения к истории и достижениям отечественной химической науки; химически грамотное поведение в профессиональной деятельности и в быту при обращении с химическими веществами, материалами и процессами;
- готовность к продолжению образования и повышения квалификации в избранной профессиональной деятельности иобъективное осознание роли химических компетенций в этом:
- умение использовать достижения современной химической науки и химических технологий для повышения собственного интеллектуального развития в выбранной профессиональной деятельности;

метапредметных:

- использование различных видов познавательной деятельности иосновных интеллектуальныхопераций (постановки задачи, формулирования гипотез, анализа и синтеза, сравнения, обобщения, систематизации, выявления причинно-следственных связей, поиска аналогов, формулирования выводов) для решения поставленной задачи, применение основных методов познания (наблюдения, научного эксперимента) для изучения различных сторон химических объектов и процессов, с которыми возникает необходимость сталкиваться в профессиональной сфере;
- использование различных источников для получения химической информации, умение оценить ее достоверность для достижения хороших результатов в профессиональной сфере;

• предметных:

- сформированность представлений о месте химии в современной научной картине мира; понимание роли химии в формировании кругозора и функциональной грамотности человека для решения практических задач;
- владение основополагающими химическими понятиями, теориями, законами и закономерностями;
- уверенное пользование химической терминологией и символикой;
- владение основными методами научного познания, используемыми в химии: наблюдением, описанием, измерением, экспериментом; умение обрабатывать, объяснять результаты проведенных опытов и делать выводы; готовность и способность применять методы познания при решении практических задач;
- сформированность умения давать количественные оценкиипроизводить расчеты по химическим формулам и уравнениям;
- владение правилами техники безопасности при использовании химических веществ;
- сформированность собственной позиции по отношению к химической информации, получаемой из разных источников.
- Сформированность представлений о роли и месте биологии в современной научной картине мира; понимание роли биологии в формировании кругозора и функциональной грамотности для решения практических задач;

- Владение основополагающими понятиями и представлениями о живой природе, ее уровневой организации и эволюции; уверенное пользование биологической терминологией исимволикой;
- Владение основными методами научного познания, используемыми при биологических исследованиях живых объектов и экосистем: описанием, измерением, проведением наблюдений; выявление и оценка антропогенных изменений в природе;
- Сформированность умений объяснять результаты биологических экспериментов, решать элементарные биологические задачи;
- сформированность собственной позиции по отношению к биологической информации, получаемой из разных источников, глобальным экологическим проблемам и путям их решения.
- сформированность представлений об экологической культуре как условии достижения устойчивого (сбалансированного) развития общества и природы, экологических связях в системе «человек—общество природа»;
- сформированность экологического мышления и способности учитывать и оценивать экологические последствия в разных сферах деятельности;
- владение умениями применять экологические знания в жизненных ситуациях, связанных с выполнением типичных социальных ролей;
- владение знаниями экологических императивов, гражданских прав и обязанностей в области энерго- и ресурсосбережения в интересах сохранения окружающей среды, здоровья и безопасности жизни;
- сформированность личностного отношения к экологическим ценностям, моральной ответственности за экологические последствия своих действий в окружающей среде;
- сформированность способности к выполнению проектов экологически ориентированной социальной деятельности, связанных с экологической безопасностью окружающей среды, здоровьем людей и повышением их экологической культуры.

СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ Ввеление

Научные методы познания веществ и химических явлений. Роль эксперимента и теории в химии. Моделирование химических процессов. Значение химии при освоении профессий СПО естественно-научного профиля профессионального образования.

1. ОБЩАЯ И НЕОРГАНИЧЕСКАЯ ХИМИЯ Ввеление

Научные методы познания веществ и химических явлений. Роль эксперимента и теории в химии. Значение химии при освоении профессий СПО естественно-научного профиля профессионального образования.

1. Органическая химия

1.1. Предмет органической химии. Теория строения органических соединений

Предмет органической химии. Понятие об органическом веществе и органической химии. Краткий очерк истории развития органической химии. Витализм и его крушение. Особенности строения органических соединений. Круговорот углерода в природе.

Теория строения органических соединений А. М. Бутлерова. Предпосылки создания теории строения. Основные положения теории строения А. М. Бутлерова. Химическое строение и свойства органических веществ. Понятие об изомерии. Способы отображения строения молекулы (формулы, модели). Значение теории А. М. Бутлерова для развития органической химии и химических прогнозов.

Строение атома углерода. Электронное облако и орбиталь, s- и p-орбитали. Электронные и электронно-графические формулы атома углерода в основном и возбужденном состояниях. Ковалентная химическая связь и ее классификация по способу перекрывания орбиталей (σ - и π -связи). Понятие гибридизации. Различные типы гибридизации и форма атомных орбиталей, взаимное отталкивание гибридных орбиталей и их расположение в пространстве в соответствии с минимумом энергии. Геометрия молекул веществ, образованных атомами углерода в различных состояниях гибридизации.

Классификация органических соединений. Классификация органических веществ в зависимости от строения углеродной цепи. Понятие функциональной группы. Классификация органических веществ по типу функциональной группы.

Основы номенклатуры органических веществ. Тривиальные названия. Рациональная номенклатура как предшественница номенклатуры IUPAC. Номенклатура IUPAC: принципы образования названий, старшинство функциональных групп, их обозначение в префиксах и суффиксах названий органических веществ.

Типы химических связей в органических соединениях и способы их разрыва. Классификация ковалентных связей по электроотрицательности связанных атомов, способу перекрывания орбиталей, кратности, механизму образования. Связь природы химической связи с типом кристаллической рещетки вещества и его физическими свойствами. Разрыв химической связи как процесс, обратный ее образованию. Гомолитический и гетеролитический разрывы связей, их сопоставление с обменным и донорно-акцепторным механизмами их образования. Понятие свободного радикала, нуклеофильной и электрофильной частицы.

Классификация реакций в органической химии. Понятие о типах и механизмах реакций в органической химии. Субстрат и реагент. Классификация реакций по изменению в структуре субстрата (присоединение, отщепление, замещение, изомеризация) и типу реагента (радикальные, нуклеофильные, электрофильные).

Реакции присоединения (A_N, A_E) , элиминирования (E), замещения (S_R, S_N, S_E) , изомеризации. Разновидности реакций каждого типа: гидрирование и дегидрирование, галогенирование и дегидратация, гидратация и дегидратация, гидрогалогенирование и дегидрогалогенирование, полимеризация и поликонденсация, перегруппировка. Особенности окислительно-восстановительных реакций в органической химии.

Современные представления о химическом строении органических веществ. Основные направления развития теории строения А. М. Бутлерова. Изомерия органических веществ и ее виды. Структурная изомерия: межклассовая, углеродного скелета, положения кратной связи и функциональной группы. Пространственная изомерия: геометрическая и оптическая. Понятие

асимметрического центра. Биологическое значение оптической изомерии. Взаимное влияние атомов в молекулах органических веществ. Электронные эффекты атомов и атомных групп в органических молекулах. Индукционный эффект, положительный и отрицательный, его особенности. Мезомерный эффект (эффект сопряжения), его особенности.

Демонстрации

Коллекции органических веществ (в том числе лекарственных препаратов, красителей), материалов (природных и синтетических каучуков, пластмасс и волокон) и изделий из них (нитей, тканей, отделочных материалов).

Модели молекул СН₄, С₂Н₄, С₂Н₂, С₆Н₆, СН₃ОН — шаростержневые и объемные.

Модели отталкивания гибридных орбиталей с помощью воздушных щаров.

Взаимодействие натрия с этанолом и отсутствие взаимодействия с диэтиловым эфиром.

Опыты, подтверждающие наличие функциональных групп у соединений различных классов.

Лабораторный опыт

Изготовление моделей молекул —представителей различных классов органических соединений.

Практические занятия.

Обнаружение углерода и водорода в органическом соединении. Обнаружение галогенов (проба Бейльштейна).

1.2. Предельные углеводороды

Гомологический ряд алканов. Понятие об углеводородах. Особенности строения предельных углеводородов. Алканы как представители предельных углеводородов.

Электронное и пространственное строение молекулы метана и других алканов. Гомологический ряд и изомерия парафинов. Нормальное и разветвленное строение углеродной цепи. Номенклатура алканов и алкильных заместителей. Физические свойства алканов. Алканы в природе.

Химические свойства алканов. Реакции SR-типа: галогенирование (работы Н. Н. Семенова), нитрование по Коновалову. Механизм реакции хлорирования алканов. Реакции дегидрирования, горения, каталитического окисления алканов. Крекинг алканов, различные виды крекинга, применение в промышленности. Пиролиз и конверсия метана, изомеризация алканов.

Применение и способы получения алканов. Области применения алканов. Промышленные способы получения алканов: получение из природных источников, крекинг парафинов, получение синтетического бензина, газификация угля, гидрирование алканов. Лабораторные способы получения алканов: синтез Вюрца, декарбоксилирование, гидролиз карбида алюминия.

Циклоалканы. Гомологический ряд и номенклатура циклоалканов, их общая формула. Понятие о напряжении цикла. Изомерия циклоалканов: межклассовая, углеродного скелета, геометрическая. Получение и физические свойства циклоалканов. Химические свойства циклоалканов. Специфика свойств циклоалканов с малым размером цикла. Реакции присоединения и радикального замешения.

Демонстрации

Модели молекул метана, других алканов, различных конформаций циклогексана. Растворение парафина в бензине и испарение растворителя из смеси.

Плавление парафина и его отношение к воде (растворимость, плотность, смачивание).

Разделение смеси бензин — вода с помощью делительной воронки.

Горение метана, пропан-бутановой смеси, парафина в условиях избытка и недостатка кислорода.

Взрыв смеси метана с воздухом и хлором. Восстановление оксидов тяжелых металлов парафином.

Отношение циклогексана к бромной воде и раствору перманганата калия.

Лабораторные опыты

Изготовление моделей молекул алканов и галогеналканов.

Изготовление парафинированной бумаги, испытание ее свойств: отношения к воде и жирам.

Обнаружение воды, сажи, углекислого газа в продуктах горения свечи.

Ознакомление со свойствами твердых парафинов: плавлением, растворимостью в воде и органических растворителях, химической инертностью (отсутствием взаимодействия с бромной водой, растворами перманганата калия, гидроксида натрия и серной кислоты).

Практическое занятие

Получение метана и изучение его свойств: горения, отношения к бромной воде и раствору перманганата калия.

1.3. Этиленовые и диеновые углеводороды

Гомологический ряд алкенов. Электронное и пространственное строение молекулы этилена и алкенов. Гомологический ряд и общая формула алкенов. Изомерия этиленовых углеводородов: межклассовая, углеродного скелета, положения кратной связи, геометрическая. Особенности номенклатуры этиленовых углеводородов, названия важнейших радикалов. Физические свойства алкенов.

Химические свойства алкенов. Электрофильный характер реакций, склонность к реакциям присоединения, окисления, полимеризации. Правило Марковникова и его электронное обоснование. Реакции галогенирования, гидрогалогенирования, гидратации, гидрирования. Механизм A_E -реакций. Понятие о реакциях полимеризации. Горение алкенов. Реакции окисления в мягких и жестких условиях. Реакция Вагнера и ее значение для обнаружения непредельных углеводородов, получения гликолей.

Применение и способы получения алкенов. Использование высокой реакционной способности алкенов в химической промышленности. Применение этилена и про- пилена. Промышленные способы получения алкенов. Реакции дегидрирования и крекинга алкенов. Лабораторные способы получения алкенов.

Алкадиены. Понятие и классификация диеновых углеводородов по взаимному расположению кратных связей в молекуле. Особенности электронного и пространственного строения сопряженных диенов. Понятие о π -электронной системе. Номенклатура диеновых углеводородов. Особенности химических свойств сопряженных диенов как следствие их электронного строения. Реакции 1,4-присоединения. Полимеризация диенов. Способы получения диеновых углеводородов: работы С. В. Лебедева, дегидрирование алканов.

Основные понятия химии высокомолекулярных соединений (на примере продуктов полимеризации алкенов, алкадиенов и их галогенпроизводных). Мономер, полимер, реакция полимеризации, степень полимеризации, структурное звено. Типы полимерных цепей: линейные, разветвленные, сшитые. Понятие о стереорегулярных полимерах. Полимеры термопластичные и термореактивные. Представление о пластмассах и эластомерах. Полиэтилен высокого и низкого давления, его свойства и применение. Катализаторы Циглера — Натта. Полипропилен, его применение и свойства. Галогенсодержащие полимеры: тефлон, поливинилхлорид. Каучуки натуральный и синтетические. Сополимеры (бутадиенстирольный каучук). Вулканизация каучука, резина и эбонит.

Демонстрации

Модели молекул структурных и пространственных изомеров алкенов и алкадиенов. Коллекция «Каучук и резина».

Деполимеризация каучука. Сгущение млечного сока каучуконосов (молочая, одуванчиков, фикуса).

Лабораторные опыты

Обнаружение непредельных соединений в керосине, скипидаре.

Ознакомление с образцами полиэтилена и полипропилена.

Распознавание образцов алканов и алкенов.

Практические занятия

Получение этилена дегидратацией этилового спирта.

Взаимодействие этилена с бромной водой, раствором перманганата калия.

Сравнение пламени этилена с пламенем предельных углеводородов (метана, пропан-бутановой смеси).

1.4. Ацетиленовые углеводороды

Гомологический ряд алкинов. Электронное и пространственное строение ацетилена и других алкинов. Гомологический ряд и общая формула алкинов. Номенклатура ацетиленовых углеводородов. Изомерия межклассовая, углеродного скелета, положения кратной связи.

Химические свойства и применение алкинов. Особенности реакций присоединения по тройной углерод-углеродной связи. Реакция Кучерова. Правило Марковникова применительно к ацетиленам. Подвижность атома водорода (кислотные свойства алкинов). Окисление алкинов. Реакция Зелинского. Применение ацетиленовых углеводородов. Поливинилацетат.

Получение алкинов. Получение ацетилена пиролизом метана и карбидным методом.

Демонстрации

Модели молекулы ацетилена и других алкинов.

Получение ацетилена из карбида кальция, ознакомление с физическими и химическими свойствами ацетилена: растворимостью в воде, горением, взаимодействием с бромной водой, раствором перманганата калия, солями меди (I) и серебра.

Лабораторный опыт

Изготовление моделей молекул алкинов, их изомеров.

1.5. Ароматические углеводороды

Гомологический ряд аренов. Бензол как представитель аренов. Развитие представлений о строении бензола. Современные представления об электронном и пространственном строении бензола. Образование ароматической π -системы. Гомологи бензола, их номенклатура, общая формула. Номенклатура для дизамещенных производных бензола: орто-, мета-, парарасположение заместителей. Физические свойства аренов.

реакций свойства Примеры электрофильного Химические аренов. замещения: (катализаторы алкилирования Фриделя---Крафтса), галогенирования, нитрования, сульфирования. Реакции гидрирования и присоединения хлора к бензолу. Особенности химических свойств гомологов бензола. Взаимное влияние атомов на примере гомологов аренов. Ориентация в реакциях электрофильного замещения. Ориентанты I и II рода.

Применение и получение аренов. Природные источники ароматических углеводородов. Ароматизация алканов и циклоалканов. Алкилирование бензола.

Демонстрации

Шаростержневые и объемные модели молекул бензола и его гомологов. Разделение смеси бензол— вода с помощью делительной воронки.

Растворяющая способность бензола (экстракция органических и неорганических веществ бензолом из водного раствора йода, красителей; растворение в бензоле веществ, труднорастворимых в воде (серы, бензойной кислоты).

Горение бензола.

Отношение бензола к бромной воде, раствору перманганата калия. Получение нитробензола.

Ознакомление с физическими свойствами ароматических углеводородов с использованием растворителя «Сольвент». Изготовление и использование простейшего прибора для хроматографии.

Получение бензола декарбоксилированием бензойной кислоты. Получение и расслоение эмульсии бензола с водой. Отношение бензола к бромной воде и раствору перманганата калия.

1.6. Природные источники углеводородов

Нефть. Нахождение в природе, состав и физические свойства нефти. Топливноэнергетическое значение нефти. Промышленная переработка нефти. Ректификация нефти, основные фракции ее разделения, их использование. Вторичная переработка нефтепродуктов. Ректификация мазута при уменьшенном давлении. Крекинг нефтепродуктов. Различные виды крекинга, работы В. Г. Шухова. Изомеризация алканов. Алкилирование непредельных углеводородов. Риформинг нефтепродуктов. Качество автомобильного топлива. Октановое число.

Природный и попутный нефтяной газы. Сравнение состава природного и попутного газов, их практическое использование.

Каменный уголь. Основные направления использования каменного угля. Коксование каменного угля, важнейшие продукты этого процесса: кокс, каменноугольная смола, надсмольная вода. Соединения, выделяемые из каменноугольной смолы. Продукты, получаемые из надсмольной воды.

Экологические аспекты добычи, переработки и использования горючих ископаемых.

Демонстрации

Коллекция «Природные источники углеводородов». Сравнение процессов горения нефти и природного газа. Образование нефтяной пленки на поверхности воды.

Каталитический крекинг парафина (или керосина).

Лабораторные опыты

Определение наличия непредельных углеводородов в бензине и керосине. Растворимость различных нефтепродуктов (бензина, керосина, дизельного топлива, вазелина, парафина) друг в друге.

1.7. Гидроксильные соединения

Строение и классификация спиртов. Классификация спиртов по типу углеводородного радикала, числу гидроксильных групп и типу атома углерода, связанного с гидроксильной группой. Электронное и пространственное строение гидроксильной группы. Влияние строения спиртов на их физические свойства. Межмолекулярная водородная связь. Гомологический ряд предельных одноатомных спиртов. Изомерия и номенклатура алканолов, их общая формула.

Химические свойства алканолов. Реакционная способность предельных одноатомных спиртов. Сравнение кислотно-основных свойств органических и неорганических соединений, содержащих ОН-группу: кислот, оснований, амфотерных соединений (воды, спиртов). Реакции, подтверждающие кислотные свойства спиртов. Реакции замещения гидроксильной группы. Межмолекулярная дегидратация спиртов, условия образования простых эфиров. Сложные эфиры неорганических и органических кислот, реакции этерификации. Окисление и окислительное дегидрирование спиртов.

Способы получения спиртов. Гидролиз галогеналканов. Гидратация алкенов, условия ее проведения. Восстановление карбонильных соединений.

Отдельные представители алканолов. Метанол, его промышленное получение и применение в промышленности. Биологическое действие метанола. Специфические способы получения этилового спирта. Физиологическое действие этанола.

Многоатомные спирты. Изомерия и номенклатура представителей двух- и трех- атомных спиртов. Особенности химических свойств многоатомных спиртов, их каче- ственное обнаружение. Отдельные представители: этиленгликоль, глицерин, способы их получения, практическое применение.

Фенол. Электронное и пространственное строение фенола. Взаимное влияние ароматического кольца и гидроксильной группы.

Химические свойства фенола как функция его химического строения. Бромирование фенола (качественная реакция), нитрование (пикриновая кислота, ее свойства и применение). Образование окрашенных комплексов с ионом Fe^{3+} . Применение фенола. Получение фенола в промышленности.

Демонстрации

Модели молекул спиртов и фенолов.

Растворимость в воде алканолов, этиленгликоля, глицерина, фенола. Сравнение скорости взаимодействия натрия с этанолом, пропанолом-2, 2-метил-пропанолом-2, глицерином.

Получение бромэтана из этанола.

Вытеснение фенола из фенолята натрия угольной кислотой. Реакция фенола

с формальдегидом.

Качественные реакции на фенол.

Зависимости растворимости фенола в воде от температуры. Взаимодействие

фенола с раствором щелочи.

Распознавание растворов фенолята натрия и карбоната натрия (барботаж выдыхаемого воздуха или действие сильной кислоты).

Распознавание водных растворов фенола и глицерина.

Лабораторные опыты

Ректификация смеси этанол— вода.

Обнаружение воды в азеотропной смеси воды и этилового спирта.

Практические занятия

Изучение растворимости спиртов в воде.

Окисление спиртов различного строения хромовой смесью. Получение диэтилового эфира.

Получение глицерата меди.

1.8. Альдегиды и кетоны

Гомологические ряды альдегидов и кетонов. Понятие о карбонильных соединениях. Электронное строение карбонильной группы. Изомерия и номенклатура альдегидов и кетонов. Физические свойства карбонильных соединений.

Химические свойства альдегидов и кетонов. Реакционная способность карбонильных соединений. Реакции окисления альдегидов, качественные реакции на альдегидную группу. Реакции поликонденсации: образование фенолоформальдегидных смол.

Применение и получение карбонильных соединений. Применение альдегидов и кетонов в быту и промышленности. Альдегиды и кетоны в природе (эфирные масла, феромоны). Получение карбонильных соединений окислением спиртов, гидратацией алкинов, окислением углеводородов. Отдельные представители альдегидов и кетонов, специфические способы их получения и свойства.

Демонстрации

Шаростержневые и объемные модели молекул альдегидов и кетонов. Получение уксусного альдегида, окисление этанола хромовой смесью. Качественные реакции на альдегидную группу.

Лабораторные опыты

Окисление этанола в этаналь раскаленной медной проволокой.

Получение фенолоформальдегидного полимера. Распознавание раствора ацетона и формалина.

Практические занятия

Изучение восстановительных свойств альдегидов: реакция «серебряного зеркала», восстановление гидроксида меди (II).

Взаимодействие формальдегида с гидросульфитом натрия.

1.9. Карбоновые кислоты и их производные

Гомологический ряд предельных одноосновных карбоновых кислот. Понятие о карбоновых кислотах и их классификация. Электронное и пространственное строение карбоксильной группы. Гомологический ряд предельных одноосновных карбоновых кислот, их номенклатура и изомерия. Межмолекулярные водородные связи карбоксильных групп, их влияние на физические свойства карбоновых кислот.

Химические свойства карбоновых кислот. Реакции, иллюстрирующие кислотные свойства и их сравнение со свойствами неорганических кислот. Образование функциональных производных карбоновых кислот. Реакции этерификации. Ангидриды карбоновых кислот, их получение и применение.

Способы получения карбоновых кислот. Отдельные представители и их значение. Общие способы получения: окисление алканов, алкенов, первичных спиртов, альдегидов. Важнейшие представители карбоновых кислот, их биологическая роль, специфические способы получения, свойства и применение муравьиной, уксусной, пальмитиновой и стеариновой; акриловой и метакриловой; олеиновой, линолевой и линоленовой; щавелевой; бензойной кислот.

Сложные эфиры. Строение и номенклатура сложных эфиров, межклассовая изомерия с карбоновыми кислотами. Способы получения сложных эфиров. Обратимость реакции этерификации и факторы, влияющие на смещение равновесия. Образование сложных полиэфиров. Полиэтилентерефталат. Лавсан как представитель синтетичских волокон. Химические свойства и применение сложных эфиров.

Жиры. Жиры как сложные эфиры глицерина. Карбоновые кислоты, входящие в состав жиров. Зависимость консистенции жиров от их состава. Химические свойства жиров: гидролиз, омыление, гидрирование. Биологическая роль жиров, их использование в быту и промышленности.

Соли карбоновых кислот. Мыла. Способы получения солей: взаимодействие карбоновых кислот с металлами, основными оксидами, основаниями, солями; щелочной гидролиз сложных эфиров. Химические свойства солей карбоновых кислот: гидролиз, реакции ионного обмена. Мыла, сущность моющего действия. Отношение мыла к жесткой воде. Синтетические моющие средства — СМС (детергенты), их преимущества и недостатки.

Демонстрации

Знакомство с физическими свойствами важнейших карбоновых кислот. Возгонка бензойной кислоты.

Отношение различных карбоновых кислот к воде.

Сравнение рН водных растворов уксусной и соляной кислот одинаковой молярности.

Получение приятно пахнущего сложного эфира.

Отношение сливочного, подсолнечного, машинного масел и маргарина к бромной воде и раствору перманганата калия.

Лабораторные опыты

Взаимодействие раствора уксусной кислоты с магнием, оксидом цинка, гидроксидом железа (III), раствором карбоната калия и стеарата калия.

Ознакомление с образцами сложных эфиров.

Отношение сложных эфиров к воде и органическим веществам. Выведение

жирного пятна с помощью сложного эфира.

Растворимость жиров в воде и органических растворителях.

Сравнение моющих свойств хозяйственного мыла и СМС в жесткой воде.

Практические занятия

Растворимость различных карбоновых кислот в воде. Взаимодействие уксусной кислоты с металлами. Получение изоамилового эфира уксусной кислоты.

Сравнение степени ненасыщенности твердого и жидкого жиров. Омыление жира. Получение мыла и изучение его свойств: пенообразования, реакций ионного обмена, гидролиза, выделения свободных жирных кислот.

1.10Углеводы

Понятие об углеводах. Классификация углеводов. Моно-, ди- и полисахариды, представители каждой группы углеводов. Биологическая роль углеводов, их значение в жизни человека и общества.

Моносахариды. Строение и оптическая изомерия моносахаридов. Их классификация по числу атомов углерода и природе карбонильной группы. Формулы Фишера и Хеуорса для изображения молекул моносахаридов. Отнесение моносахаридов к D- и L-ряду. Важнейшие представители моноз.

Глюкоза, строение ее молекулы и физические свойства. Таутомерия. Химические свойства глюкозы: реакции по альдегидной группе («серебряного зеркала», окисление азотной кислотой, гидрирование). Реакции глюкозы как многоатомного спирта: взаимодействие глюкозы с гидроксидом меди (II) при комнатной температуре и нагревании. Различные типы брожения (спиртовое, молочнокислое). Глюкоза в природе. Биологическая роль и применение глюкозы. Фруктоза как изомер глюкозы. Сравнение строения молекулы и химических свойств глюкозы и фруктозы. Фруктоза в природе и ее биологическая роль.

Пентозы. Рибоза и дезоксирибоза как представители альдопентоз. Строение молекул.

Дисахариды. Строение дисахаридов. Способ сочленения циклов. Восстанавливающие и невосстанавливающие свойства дисахаридов как следствие сочленения цикла. Строение и химические свойства сахарозы. Технологические основы производства сахарозы. Лактоза и мальтоза как изомеры сахарозы.

Полисахариды. Общее строение полисахаридов. Строение молекулы крахмала, амилоза и амилопектин. Физические свойства крахмала, его нахождение в природе и биологическая роль. Гликоген. Химические свойства крахмала. Строение элементарного звена целлюлозы. Влияние строения полимерной цепи на физические и химические свойства целлюлозы. Гидролиз целлюлозы, образование сложных эфиров с неорганическими и органическими кислотами. Понятие об искусственных волокнах: ацетатном шелке, вискозе. Нахождение в природе и биологическая роль целлюлозы. Сравнение свойств крахмала и целлюлозы.

Демонстрации

Образцы углеводов и изделий из них.

Получение сахарата кальция и выделение сахарозы из раствора сахарата кальция.

Взаимодействие глюкозы с фуксинсернистой кислотой.

Отношение растворов сахарозы и мальтозы к Cu(OH)₂ при нагревании. Ознакомление с физическими свойствами крахмала и целлюлозы.

Набухание целлюлозы и крахмала в воде. Получение тринитрата целлюлозы.

Коллекция волокон.

Лабораторные опыты

Ознакомление с физическими свойствами глюкозы (аптечная упаковка, таблетки). Кислотный гидролиз сахарозы.

Знакомство с образцами полисахаридов.

Обнаружение крахмала с помощью качественной реакции в меде, хлебе, йогурте, маргарине, макаронных изделиях, крупах.

Практические занятия

Реакция «серебряного зеркала» глюкозы. Взаимодействие глюкозы с гидроксидом меди (II) при различных температурах.

Действие аммиачного раствора оксида серебра на сахарозу. Обнаружение лактозы в молоке. Действие йода на крахмал.

1.11Амины, аминокислоты, белки

Классификация и изомерия аминов. Понятие об аминах. Первичные, вторичные и третичные амины. Классификация аминов по типу углеводородного радикала и числу аминогрупп в молекуле. Гомологические ряды предельных алифатических и ароматических аминов, изомерия и номенклатура.

Химические свойства аминов. Амины как органические основания, их сравнение с аммиаком и другими неорганическими основаниями. Сравнение химических свойств алифатических и ароматических аминов. Образование амидов. Анилиновые красители. Понятие о синтетических волокнах. Полиамиды и полиамидные синтетические волокна.

Применение и получение аминов. Получение аминов. Работы Н. Н. Зинина.

Аминокислоты. Понятие об аминокислотах, их классификация и строение. Оптическая изомерия α -аминокислот. Номенклатура аминокислот. Двойственность кислотно-основных свойств аминокислот и ее причины. Биполярные ионы. Реакции конденсации. Пептидная связь. Синтетические волокна: капрон, энант. Классификация волокон. Получение аминокислот, их применение и биологическая функция.

Белки. Белки как природные полимеры. Первичная, вторичная, третичная и четвертичная структуры белков. Фибриллярные и глобулярные белки. Химические свойства белков: горение, денатурация, гидролиз, качественные (цветные) реакции. Биологические функции белков, их значение. Белки как компонент пищи. Проблема белкового голодания и пути ее решения.

Демонстрации

Физические свойства метиламина: агрегатное состояние, цвет, запах, отношение к воде. Горение метиламина.

Взаимодействие анилина и метиламина с водой и кислотами.

Окрашивание тканей анилиновыми красителями.

Обнаружение функциональных групп в молекулах аминокислот.

Нейтрализация щелочи аминокислотой.

Нейтрализация кислоты аминокислотой.

Растворение и осаждение белков.

Лабораторные опыты

Изготовление шаростержневых и объемных моделей изомерных аминов. Растворение белков в воде и их коагуляция.

Обнаружение белка в курином яйце и молоке.

Практические занятия

Образование солей анилина. Бромирование анилина. Образование солей глицина. Получение медной соли глицина. Денатурация белка. Цветные реакции белков.

1.12. Азотсодержащие гетероциклические соединения. Нуклеиновые кислоты

Нукленновые кислоты. Нуклеиновые кислоты как природные полимеры. Нуклеотиды, их строение, примеры. АТФ и АДФ, их взаимопревращение и роль этого процесса в природе. Понятие ДНК и РНК. Строение ДНК, ее первичная и вторичная структура. Работы Ф. Крика и Д. Уотсона. Комплементарность азотистых оснований. Репликация ДНК. Особенности строения РНК. Типы РНК и их биологические функции. Понятие о троичном коде (кодоне). Биосинтез белка в живой клетке. Генная инженерия и биотехнология. Трансгенные формы растений и животных.

Демонстрации

Модели молекул важнейших гетероциклов. Коллекция гетероциклических соединений. Действие раствора

пиридина на индикатор. Взаимодействие пиридина с соляной кислотой.

Модель молекулы ДНК, демонстрация принципа комплементарности азотистых оснований.

Образцы продуктов питания из трансгенных форм растений и животных. Лекарства и препараты, изготовленные методами генной инженерии и биотехнологии.

Лабораторный опыт

Изготовление объемных и шаростержневых моделей азотистых гетероциклов.

1.13. Биологически активные соединения

Ферменты. Понятие о ферментах как о биологических катализаторах белковой природы. Особенности строения и свойств в сравнении с неорганическими катализаторами. Классификация ферментов. Особенности строения и свойств ферментов: селективность и эффективность. Зависимость активности ферментов от температуры и рН среды. Значение ферментов в биологии и применение в промышленности.

Витамины. Понятие о витаминах. Их классификация и обозначение. Норма потребления витаминов. Водорастворимые (на примере витаминов С, группы В и Р) и жирорастворимые (на примере витаминозы, гипервитаминозы и гиповитаминозы, их профилактика.

Гормоны. Понятие о гормонах как биологически активных веществах, выполняющих эндокринную регуляцию жизнедеятельности организмов. Классификация гормонов: стероиды, производные аминокислот, полипептидные и белковые гормоны. Отдельные представители: эстрадиол, тестостерон, инсулин, адреналин.

Лекарства. Понятие о лекарствах как химиотерапевтических препаратах. Краткие исторические сведения о возникновении и развитии химиотерапии. Группы лекарств: сульфамиды (стрептоцид), антибиотики (пенициллин), антипиретики (аспирин), анальгетики (анальгин). Механизм действия некоторых лекарственных препаратов, строение молекул, прогнозирование свойств на основе анализа химического строения. Антибиотики, их классификация по строению, типу и спектру действия. Безопасные способы применения, лекарственные формы.

Демонстрации

Сравнение скорости разложения $_{H2O2}$ под действием фермента каталазы и неорганических катализаторов: KI, FeCl₃, MnO₂.

Образцы витаминных препаратов.

Поливитамины.

Иллюстрации фотографий животных с различными формами авитаминозов. Плакат с изображением структурных формул эстрадиола, тестостерона, адреналина. Взаимодействие адреналина с раствором FeCl₃.

Белковая природа инсулина (цветная реакция на белки).

Плакаты или кодограммы с формулами амида сульфаниловой кислоты, дигидрофолиевой и ложной дигидрофолиевой кислот, бензилпенициллина, тетрациклина, цефотаксима, аспирина.

Лабораторные опыты

Испытание растворимости адреналина в воде и соляной кислоте.

Обнаружение аспирина в готовой лекарственной форме.

Практические занятия

Обнаружение витамина A в подсолнечном масле. Обнаружение витамина C в яблочном соке. Определение витамина D в рыбьем жире или курином желтке.

Действие амилозы слюны на крахмал. Действие дегидрогеназы на метиленовый синий. Действие каталазы на пероксид водорода.

Анализ лекарственных препаратов, производных салициловой кислоты. Анализ лекарственных препаратов, производных *n*-аминофенола.

2. Общая и неорганическая химия 2.1.Химия — наука о веществах

Состав вещества. Химические элементы. Способы существования химических эле- ментов: атомы, простые и сложные вещества. Вещества постоянного и переменного состава. Закон постоянства состава веществ. Вещества молекулярного и немолекулярного строения. Способы

отображения молекул: молекулярные и структурные формулы; шаростержневые и масштабные пространственные (Стюарта— Бриглеба) модели молекул.

Измерение вещества. Масса атомов и молекул. Атомная единица массы. Относительные атомная и молекулярная массы. Количество вещества и единицы его измерения: моль, ммоль, кмоль. Число Авогадро. Молярная масса.

Агрегатные состояния вещества. Твердое (кристаллическое и аморфное), жидкое и газообразное агрегатные состояния вещества. Закон Авогадро и его следствия. Молярный объем веществ в газообразном состоянии. Объединенный газовый закон и уравнение Менделеева— Клапейрона.

Смеси веществ. Различия между смесями и химическими соединениями. Массовая и объемная доли компонентов смеси.

Демонстрации

Опыты, иллюстрирующие закон сохранения массы веществ. Набор моделей атомов и молекул.

Некоторые вещества количеством в 1 моль. Модель

молярного объема газов.

Практические занятия

Изготовление моделей молекул некоторых органических и неорганических веществ.

Очистка веществ фильтрованием и дистилляцией. Очистка веществ перекристаллизацией.

2.2. Строение атома

Атом — **сложная частица**. Доказательства сложности строения атома: катодные и рентгеновские лучи, фотоэффект, радиоактивность, электролиз.

Планетарная модель атома Э. Резерфорда. Строение атома по Н. Бору. Современные представления о строении атома. Корпускулярно-волновой дуализм частиц микромира.

Состав атомного ядра. Нуклоны: протоны и нейтроны. Изотопы и нуклиды.

Устойчивость ядер.

Электронная оболочка атомов. Понятие об электронной орбитали и электронном облаке. Квантовые числа: главное, орбитальное (побочное), магнитное и спиновое. Распределение электронов по энергетическим уровням, подуровням и орбиталям в соответствии с принципом наименьшей энергии, принципом Паули и правилом Гунда. Электронные конфигурации атомов химических элементов.

Валентные возможности атомов химических элементов.

Электронная классификация химических элементов: s-, p-, d-, f-элементы.

Демонстрации

Фотоэффект.

Модели орбиталей различной формы.

Лабораторный опыт

Наблюдение спектров испускания и поглощения соединений химических элементов с помощью спектроскопа.

2.3. Периодический закон и Периодическая система химических элементов Д. И. Менделеева

Открытие периодического закона. Предпосылки: накопление фактологического материала, работы предшественников (И. В. Деберейнера, А. Э. Шанкуртуа, Дж. А. Ньюлендса, Л. Ю. Мейера), съезд химиков в Карлсруэ, личностные качества Д. И. Менделеева. Открытие Д. И. Менделеевым Периодического закона.

Периодический закон и строение атома. Изотопы. Современное понятие химического элемента. Закономерность Г. Мозли. Современная формулировка Периодического закона. Периодическая система и строение атома. Физический смысл порядкового номера элементов, номеров группы и периода. Периодическое изменение свойств элементов: радиуса атома; энергии ионизации; электроотрицательности. Причины изменения металлических и неметаллических свойств элементов в группах и периодах, в том числе больших и сверхбольших. Значение Периодического закона и Периодической системы химических элементов Д. И. Менделеева для развития науки и понимания химической картины мира.

Демонстрации

Различные варианты таблицы Периодической системы химических элементов Д. И. Менделеева.

Образцы простых веществ оксидов и гидроксидов элементов III периода.

Лабораторный опыт

Сравнение свойств простых веществ, оксидов и гидроксидов элементов III периода.

2.4. Строение вещества

Понятие о химической связи. Типы химических связей: ковалентная, ионная, металлическая и водородная.

Ковалентная химическая связь. Два механизма образования этой связи: обменный и донорно-акцепторный. Основные параметры этого типа связи: длина, прочность,

угол связи или валентный угол. Основные свойства ковалентной связи: насыщен- ность, поляризуемость и прочность. Электроотрицательность и классификация ковалентных связей по этому признаку: полярная и неполярная ковалентные связи. Полярность связи и полярность молекулы. Способ перекрывания электронных орбиталей и классификация ковалентных связей по этому признаку: σ - и π -связи. Кратность ковалентных связей и классификация их по этому признаку: одинарные, двойные, тройные, полуторные. Типы кристаллических решеток у веществ с этим типом связи: атомные и молекулярные. Физические свойства веществ с этими кристаллическими решетками.

Ионная химическая связь. Крайний случай ковалентной полярной связи. Механизм образования ионной связи. Ионные кристаллические решетки и свойства веществ с такими кристаллами.

Металлическая химическая связь. Особый тип химической связи, существующий в металлах и сплавах. Ее отличия и сходство с ковалентной и ионной связями. Свойства металлической связи. Металлические кристаллические решетки и свойства веществ с такими кристаллами.

Водородная химическая связь. Механизм образования такой связи. Ее классификация: межмолекулярная и внутримолекулярная водородные связи. Молекулярные кристаллические решетки для этого типа связи. Физические свойства веществ с водородной связью. Биологическая роль водородных связей в организации структур биополимеров.

Единая природа химических связей: наличие различных типов связей в одном веществе, переход одного типа связи в другой и т. п.

Комплексообразование. Понятие о комплексных соединениях. Координационное число комплексообразователя. Внутренняя и внешняя сфера комплексов. Номенклатура комплексных соединений. Их значение.

Демонстрации

Модели молекул различной архитектуры.

Модели из воздушных шаров пространственного расположения sp-, sp^2- , sp^3- гибридных орбиталей.

Модели кристаллических решеток различного типа. Модели молекул ДНК и белка.

Лабораторные опыты

Взаимодействие многоатомных спиртов с фелинговой жидкостью. Качественные реакции на ионы Fe^{2+} и Fe^{3+} .

2.5. Полимеры

Неорганические полимеры. Полимеры — простые вещества с атомной кристаллической решеткой: аллотропные видоизменения углерода (алмаз, графит, карбин, фуллерен, взаимосвязь гибридизации орбиталей у атомов углерода с пространственным строением аллотропных модификаций); селен и теллур цепочечного строения. Полимеры — сложные вещества с атомной кристаллической решеткой: кварц, кремнезем (диоксидные соединения кремния), корунд (оксид алюминия) и алюмосиликаты (полевые шпаты, слюда, каолин). Минералы и горные породы. Сера пластическая. Минеральное волокно — асбест. Значение неорганических природных полимеров в формировании одной из геологических оболочек Земли — литосферы.

Органические полимеры. Способы их получения: реакции полимеризации и реакции поликонденсации. Структуры полимеров: линейные, разветвленные и пространственные.

Структурирование полимеров: вулканизация каучуков, дубление белков, отверждение поликонденсационных полимеров.

Классификация полимеров по различным признакам.

Демонстрации

Коллекции пластмасс, каучуков, волокон, минералов и горных пород. Минеральное волокно — асбест — и изделия из него.

Модели молекул белков, ДНК, РНК.

Лабораторные опыты

Ознакомление с образцами пластмасс, волокон, каучуков, минералов и горных пород.

Проверка пластмасс на электрическую проводимость, горючесть, отношение к растворам кислот, щелочей и окислителей.

Сравнение свойств термореактивных и термопластичных пластмасс. Получение нитей из капроновой или лавсановой смолы.

Обнаружение хлора в поливинилхлориде.

2.6. Дисперсные системы

Понятие о дисперсных системах. Классификация дисперсных систем в зависимости от агрегатного состояния дисперсионной среды и дисперсной фазы, а также по размеру их частиц. Грубодисперсные системы: эмульсии и суспензии. Тонкодисперсные системы: коллоидные (золи и гели) и истинные (молекулярные, молекулярно-ионные и ионные). Эффект Тиндаля. Коагуляция в коллоидных растворах. Синерезис в гелях.

Значение дисперсных систем в живой и неживой природе и практической жизни человека. Эмульсии и суспензии в строительстве, пищевой и медицинской промышленности, косметике. Биологические, медицинские и технологические золи. Значение гелей в организации живой материи. Биологические, пищевые, медицинские, косметические гели. Синерезис как фактор, определяющий срок годности продукции на основе гелей. Свертывание крови как биологический синерезис, его значение.

Демонстрации

Виды дисперсных систем и их характерные признаки.

Прохождение луча света через коллоидные и истинные растворы (эффект Тиндаля).

Лабораторные опыты

Получение суспензии серы и канифоли.

Получение эмульсии растительного масла и бензола.

Получение золя крахмала. Получение золя серы из тиосульфата натрия.

2.7. Химические реакции

Классификация химических реакций в органической и неорганической химии. Понятие о химической реакции. Реакции, идущие без изменения качественного состава веществ: аллотропизация и изомеризация. Реакции, идущие с изменением состава веществ: по числу и характеру реагирующих и образующихся веществ (разложения, соединения, замещения, обмена); по изменению степеней окисления элементов (окислительно-восстановительные и неокислительно-восстановительные реакции); по тепловому эффекту (экзо- и эндотермические); по фазе (гомо- и гетерогенные); по направлению (обратимые и необратимые); по использованию катализатора (каталитические и некаталитические); по механизму (радикальные, молекулярные и ионные).

Вероятность протекания химических реакций. Внутренняя энергия, энтальпия. Тепловой эффект химических реакций. Термохимические уравнения. Стандартная энтальпия реакций и образования веществ. Закон Г. И. Гесса и его следствия. Энтропия.

Скорость химических реакций. Понятие о скорости реакций. Скорость гомо- и гетерогенной реакции. Энергия активации.

Факторы, влияющие на скорость химической реакции. Природа реагирующих веществ. Температура (закон Вант— Гоффа). Концентрация. Катализаторы и катализ: гомо- и гетерогенный, их механизмы. Ферменты, их сравнение с неорганическими катализаторами. Зависимость скорости реакций от поверхности соприкосновения реагирующих веществ.

Обратимость химических реакций. Химическое равновесие. Понятие о химическом равновесии. Равновесные концентрации. Динамичность химического равновесия. Факторы,

влияющие на смещение равновесия: концентрация, давление, температура (принцип Ле Шателье).

Демонстрации

Превращение красного фосфора в белый; кислорода в озон. Модели бутана и изобутана.

Получение кислорода из пероксида водорода и воды; дегидратация этанола.

Цепочка превращений $P \to P_2 O_5 \to H_3 P O_4$; свойства уксусной кислоты; реакции, идущие с образованием осадка, газа и воды; свойства металлов, окисление альдегида в кислоту и спирта в альдегид.

Реакции горения; реакции эндотермические на примере реакции разложения (этанола, калийной селитры, бихромата аммония) и экзотермические на примере реакций соединения (обесцвечивание бромной воды и раствора перманганата калия этиленом, гашение извести и др.).

Взаимодействие цинка с растворами соляной и серной кислот при разных температурах, разных концентрациях соляной кислоты; разложение пероксида кислорода с помощью оксида марганца (IV), каталазы сырого мяса и сырого картофеля.

Взаимодействие цинка различной поверхности (порошка, пыли, гранул) с кислотой.

Модель «кипящего слоя».

Смещение равновесия в системе: $Fe^{3+} + 3 CNS^{-} \leftarrow \rightarrow Fe(CNS)_3$; омыление жиров, реакции этерификации.

Зависимость степени электролитической диссоциации уксусной кислоты от разбавления.

Сравнение свойств 0,1 Н растворов серной и сернистой кислот; муравьиной и уксусной кислот; гидроксидов лития, натрия и калия.

Лабораторные опыты

Получение кислорода разложением пероксида водорода и (или) перманганата калия.

Реакции, идущие с образованием осадка, газа или воды для органических и неорганических кислот.

2.8. Растворы

Понятие о растворах. Физико-химическая природа растворения и растворов. Взаимодействие растворителя и растворенного вещества. Растворимость веществ. Способы выражения концентрации растворов: массовая доля растворенного вещества (процентная), молярная.

Теория электролитической диссоциации. Механизм диссоциации веществ с различными типами химических связей. Вклад русских ученых в развитие представлений об электролитической диссоциации. Основные положения теории электролитической диссоциации. Степень электролитической диссоциации и факторы ее зависимости. Сильные и средние электролиты.

Диссоциация воды. Водородный показатель. Среда водных растворов электролитов. Реакции обмена в водных растворах электролитов.

Гидролиз как обменный процесс. Необратимый гидролиз органических и неорганических соединений и его значение в практической деятельности человека.

Обратимый гидролиз солей. Ступенчатый гидролиз. Практическое применение гидролиза.

Гидролиз органических веществ (белков, жиров, углеводов, полинуклеотидов, ATФ) и его биологическое и практическое значение. Омыление жиров. Реакция этерификации.

Демонстрации

Сравнение электропроводности растворов электролитов. Смещение равновесия диссоциации слабых кислот.

Индикаторы и изменение их окраски в разных средах. Сернокислый и ферментативный гидролиз углеводов.

Гидролиз карбонатов, сульфатов и силикатов щелочных металлов; нитратов свинца (II) или цинка, хлорида аммония.

Лабораторный опыт

Характер диссоциации различных гидроксидов.

Практическое занятие

Приготовление растворов различных видов концентрации.

2.9. Окислительно-восстановительные реакции. Электрохимические процессы

Степень окисления. Окислительно-восстановительные реакции. Восстановители окислители. Окисление и восстановление. Важнейшие окислители и восстановители. Восстановительные свойства металлов простых вешеств. Окислительные восстановительные свойства неметаллов — простых веществ. Восстановительные свойства образованных элементами в низшей (отрицательной) степени Окислительные свойства веществ, образованных элементами в высшей (положительной) степени окисления. Окислительные и восстановительные свойства веществ, образованных эдементами в промежуточных степенях окисления.

Классификация окислительно-восстановительных реакций. Реакции межатомного и межмолекулярного окисления-восстановления. Реакции внутримолекулярного окисления-восстановления. Реакции самоокисления-самовосстановления (диспропорционирования).

Методы составления уравнений окислительно-восстановительных реакций. Метод электронного баланса. Влияние среды на протекание окислительно-восстановительных процессов.

Химические источники тока. Электродные потенциалы. Ряд стандартных электродных потенциалов (электрохимический ряд напряжений металлов). Гальванические элементы и принципы их работы. Составление гальванических элементов. Образование гальванических пар при химических процессах. Гальванические элементы, при- меняемые в жизни: свинцовая аккумуляторная батарея, никель-кадмиевые батареи, топливные элементы.

Электролиз расплавов и водных растворов электролитов. Процессы, происходящие на катоде и аноде. Уравнения электрохимических процессов. Электролиз водных растворов с инертными электродами. Электролиз водных растворов с растворимыми электродами. Практическое применение электролиза.

Демонстрации

Восстановление дихромата калия цинком. Восстановление оксида меди (II) углем и водородом. Восстановление дихромата калия этиловым спиртом. Окислительные свойства азотной кислоты.

Окислительные свойства дихромата калия.

Гальванические элементы и батарейки.

Электролиз раствора хлорида меди (II).

Лабораторные опыты

Взаимодействие металлов с неметаллами, а также с растворами солей и растворами кислот.

Взаимодействие серной и азотной кислот с медью. Окислительные свойства перманганата калия в различных средах.

2.10. Классификация веществ. Простые вещества

Классификация неорганических веществ. Простые и сложные вещества. Оксиды, их классификация. Гидроксиды (основания, кислородсодержащие кислоты, амфотерные гидроксиды). Кислоты, их классификация. Основания, их классификация. Соли средние, кислые, основные и комплексные.

Металлы. Положение металлов в периодической системе и особенности строения их атомов. Простые вещества — металлы: строение кристаллов и металлическая химическая связь. Общие физические свойства металлов и их восстановительные свойства: взаимодействие с неметаллами (кислородом, галогенами, серой, азотом, водородом), водой, кислотами, растворами солей, органическими веществами (спиртами, галогеналканами, фенолом, кислотами), щелочами. Оксиды и гидроксиды металлов. Зависимость свойств этих соединений от степеней окисления металлов. Значение металлов в природе и жизни организмов.

Коррозия металлов. Понятие коррозии. Химическая коррозия. Электрохимическая коррозия. Способы защиты металлов от коррозии.

Общие способы получения металлов. Металлы в природе. Металлургия и ее виды: пиро-, гидро- и электрометаллургия. Электролиз расплавов и растворов соединений металлов и его практическое значение.

Неметаллы. Положение неметаллов в Периодической системе, особенности строения их атомов. Электроотрицательность.

Благородные газы. Электронное строение атомов благородных газов и особенности их химических и физических свойств.

Неметаллы — простые вещества. Их атомное и молекулярное строение их. Аллотропия. Химические свойства неметаллов. Окислительные свойства: взаимодействие с металлами, водородом, менее электроотрицательными неметаллами, некоторыми сложными веществами. Восстановительные свойства неметаллов в реакциях с фтором,

кислородом, сложными веществами — окислителями (азотной и серной кислотами и др.).

Демонстрации

Коллекция «Классификация неорганических веществ» и образцы представителей классов.

Коллекция «Классификация органических веществ» и образцы представителей классов.

Модели кристаллических решеток металлов.

Коллекция металлов с разными физическими свойствами.

Взаимодействие лития, натрия, магния и железа с кислородом; щелочных металлов с водой, спиртами, фенолом; цинка с растворами соляной и серной кислот; натрия с серой; алюминия с йодом; железа с раствором медного купороса; алюминия с раствором едкого натра.

Оксиды и гидроксиды хрома.

Коррозия металлов в зависимости от условий.

Защита металлов от коррозии: образцы «нержавеек», защитных покрытий. Коллекция руд.

Электролиз растворов солей.

Модели кристаллических решеток йода, алмаза, графита. Аллотропия

фосфора, серы, кислорода.

Взаимодействие водорода с кислородом; сурьмы с хлором; натрия с йодом; хлора с раствором бромида калия; хлорной и сероводородной воды; обесцвечивание бромной воды этиленом или ацетиленом.

Лабораторные опыты

Ознакомление с образцами представителей классов неорганических веществ. Ознакомление с образцами представителей классов органических веществ.

Ознакомление с коллекцией руд.

Получение кислорода и его свойства.

Получение водорода и его свойства.

Получение пластической серы, химические свойства серы.

Взаимодействие металлов с растворами кислот и солей.

Свойства угля: адсорбционные, восстановительные.

Взаимодействие цинка или алюминия с растворами кислот и щелочей. Окрашивание пламени катионами щелочных и щелочноземельных металлов.

2.11. Основные классы неорганических и органических соединений

Водородные соединения неметаллов. Получение аммиака и хлороводорода синтезом и косвенно. Физические свойства. Отношение к воде: кислотно-основные свойства.

Оксиды и ангидриды карбоновых кислот. Несолеобразующие и солеобразующие оксиды. Кислотные оксиды, их свойства. Основные оксиды, их свойства. Амфотерные оксиды, их свойства. Зависимость свойств оксидов металлов от степени окисления. Ангидриды карбоновых кислот как аналоги кислотных оксидов.

Кислоты органические и неорганические. Кислоты в свете теории электролитической диссоциации. Кислоты в свете протолитической теории. Классификация органических и неорганических кислот. Общие свойства кислот: взаимодействие органических и неорганических кислот с металлами, основными и амфотерными оксидами и гидроксидами, солями, образование сложных эфиров. Особенности свойств концентрированной серной и азотной кислот.

Основания органические и неорганические. Основания в свете теории электролитической диссоциации. Основания в свете протолитической теории. Классификация органических и неорганических оснований. Химические свойства щелочей и нерастворимых оснований. Свойства бескислородных оснований: аммиака и аминов. Взаимное влияние атомов в молекуле анилина.

Амфотерные органические и неорганические соединения. Амфотерные основания в свете протолитической теории. Амфотерность оксидов и гидроксидов переходных металлов: взаимодействие с кислотами и щелочами.

Соли. Классификация и химические свойства солей. Особенности свойств солей органических и неорганических кислот.

Генетическая связь между классами органических и неорганических соединений. Понятие о генетической связи и генетических рядах в неорганической и органической химии. Генетические ряды металла (на примере кальция и железа), неметалла (серы и кремния), переходного элемента (цинка). Генетические ряды и генетическая связь в органической химии. Единство мира веществ.

Демонстрации

Коллекции кислотных, основных и амфотерных оксидов, демонстрация их свойств.

Взаимодействие концентрированных азотной и серной кислот, а также разбавленной азотной кислоты с медью.

Реакция «серебряного зеркала» для муравьиной кислоты.

Взаимодействие раствора гидроксида натрия с кислотными оксидами (оксидом фосфора (V)), амфотерными гидроксидами (гидроксидом цинка).

Взаимодействие аммиака с хлороводородом и водой. Аналогично для метиламина.

Взаимодействие аминокислот с кислотами и щелочами. Осуществление переходов:

C a
$$\rightarrow$$
 C a O \rightarrow C a $_3(P O_4)_2 \rightarrow$ C a (O H) $_2$
P \rightarrow P 2 O 5 \rightarrow H 3 P O 4
C u \rightarrow CuO \rightarrow CuSO4 \rightarrow Cu(OH)2 \rightarrow CuO \rightarrow Cu
 $C_2H_5OH \rightarrow C_2H_4 \rightarrow C_2H_4Br_2$

Лабораторные опыты

Получение и свойства углекислого газа.

Свойства соляной, серной (разбавленной) и уксусной кислот.

Взаимодействие гидроксида натрия с солями (сульфатом меди (II) и хлоридом аммония).

Разложение гидроксида меди.

Получение и амфотерные свойства гидроксида алюминия. Получение

жесткой воды и изучение ее свойств.

Устранение временной и постоянной жесткости.

Практические занятия

Получение хлороводорода и соляной кислоты, их свойства. Получение аммиака, его свойства.

2.12. Химия элементов

s-Элементы

Водород. Двойственное положение водорода в периодической системе. Изотопы водорода. Тяжелая вода. Окислительные и восстановительные свойства водорода, его получение и применение. Роль водорода в живой и неживой природе. Вода. Роль воды как средообразующего вещества клетки. Экологические аспекты водопользования.

Элементы ІА-группы. Щелочные металлы. Общая характеристика щелочных металлов на основании положения в Периодической системе элементов Д. И. Менделеева и строения атомов. Получение, физические и химические свойства щелочных металлов. Катионы щелочных металлов как важнейшая химическая форма их существования, регулятивная роль катионов калия и натрия в живой клетке. Природные соединения натрия и калия, их значение.

Элементы ИА-группы. Общая характеристика щелочноземельных металлов и магния на основании положения в Периодической системе элементов Д. И. Менделеева и строения атомов. Кальций, его получение, физические и химические свойства. Важнейшие соединения кальция, их значение и применение. Кальций в природе, его биологическая роль.

р-Элементы

Алюминий. Характеристика алюминия на основании положения в Периодической системе элементов Д. И. Менделеева и строения атома. Получение, физические и химические свойства алюминия. Важнейшие соединения алюминия, их свойства, значение и применение. Природные соединения алюминия.

Углерод и кремний. Общая характеристика на основании их положения в Периодической системе Д. И. Менделеева и строения атома. Простые вещества, образованные этими

элементами. Оксиды и гидроксиды углерода и кремния. Важнейшие соли угольной и кремниевой кислот. Силикатная промышленность.

Галогены. Общая характеристика галогенов на основании их положения в Периодической системе элементов Д. И. Менделеева и строения атомов. Галогены — простые вещества: строение молекул, химические свойства, получение и применение. Важнейшие соединения галогенов, их свойства, значение и применение. Галогены в природе. Биологическая роль галогенов.

Халькогены. Общая характеристика халькогенов на основании их положения в Периодической системе элементов Д. И. Менделеева и строения атомов. Халькогены — простые вещества. Аллотропия. Строение молекул аллотропных модификаций и их свойства. Получение и применение кислорода и серы. Халькогены в природе, их биологическая роль.

Элементы V А-группы. Общая характеристика элементов этой группы на основании их положения в Периодической системе элементов Д. И. Менделеева и строения атомов. Строение молекулы азота и аллотропных модификаций фосфора, их физические и химические свойства. Водородные соединения элементов VA-группы. Оксиды азота и фосфора, соответствующие им кислоты. Соли этих кислот. Свойства кислородных соединений азота и фосфора, их значение и применение. Азот и фосфор в природе, их биологическая роль.

Элементы IVA-группы. Общая характеристика элементов этой группы на основании их положения в Периодической системе элементов Д. И. Менделеева и строения атомов. Углерод и его аллотропия. Свойства аллотропных модификаций углерода, их значение и применение. Оксиды и гидроксиды углерода и кремния, их химические свойства. Соли угольной и кремниевых кислот, их значение и применение. Природообразующая роль углерода для живой и кремния для неживой природы.

d-Элементы

Особенности строения атомов d-элементов (IB-VIIIB-групп). Медь, цинк, хром, железо, марганец как простые вещества, их физические и химические свойства. На- хождение этих металлов в природе, их получение и значение. Соединения d-элементов с различными степенями окисления. Характер оксидов и гидроксидов этих элементов в зависимости от степени окисления металла.

Демонстрации

Коллекции простых веществ, образованных элементами различных электронных семейств.

Коллекции минералов и горных пород.

Получение аллотропных модификаций кислорода, серы, фосфора. Химические свойства водорода, кислорода, серы, фосфора, галогенов, углерода.

Оксиды серы, азота, углерода, железа, марганца, меди с различными степенями окисления, их свойства.

Гидроксиды серы, хрома, марганца, железа, меди, алюминия и цинка, их получение и химические свойства.

Лабораторные опыты

Изучение свойств простых веществ и соединений ѕ-элементов.

Изучение свойств простых веществ и соединений р-элементов.

Изучение свойств простых веществ и соединений d-элементов.

Практические занятия

Получение гидроксидов алюминия и цинка; исследование их свойств. Получение и исследование свойств оксидов серы, углерода, фосфора.

2.13 Химия в жизни общества

Химия и производство. Химическая промышленность и химические технологии. Сырье для химической промышленности. Вода в химической промышленности. Энергия для химического производства. Научные принципы химического производства. Защита окружающей среды и охрана труда при химическом производстве. Основные стадии химического производства. Сравнение производства аммиака и метанола.

Химия в сельском хозяйстве. Химизация сельского хозяйства и ее направления. Растения и почва, почвенный поглощающий комплекс. Удобрения и их классификация. Химические средства защиты растений. Отрицательные последствия применения пестицидов и борьба с ними. Химизация животноводства.

Химия и экология. Химическое загрязнение окружающей среды. Охрана гидросферы от химического загрязнения. Охрана почвы от химического загрязнения. Охрана флоры и фауны от химического загрязнения. Биотехнология и генная инженерия.

Химия и повседневная жизнь человека. Домашняя аптека. Моющие и чистящие средства. Средства борьбы с бытовыми насекомыми. Средства личной гигиены и косметики. Химия и пища. Маркировки упаковок пищевых и гигиенических продуктов и умение их читать. Экология жилища. Химия и генетика человека.

Демонстрации

Модели производства серной кислоты и аммиака. Коллекция удобрений и пестицидов.

Образцы средств бытовой химии и лекарственных препаратов.

Практические занятия

Ознакомление с коллекцией удобрений и пестицидов.

Ознакомление с образцами средств бытовой химии и лекарственных препаратов.

Темы рефератов (докладов), индивидуальных проектов

- Биотехнология и генная инженерия технологии XXI века.
- Нанотехнология как приоритетное направление развития науки и производства в Российской Федерации.
- Современные методы обеззараживания воды.
- Аллотропия металлов.
- Жизнь и деятельность Д. И. Менделеева.
- «Периодическому закону будущее не грозит разрушением...»
- Синтез 114-го элемента триумф российских физиков-ядерщиков.
- Изотопы водорода.
- Использование радиоактивных изотопов в технических целях.
- Рентгеновское излучение и его использование в технике и медицине.
- Плазма четвертое состояние вещества.
- Аморфные вещества в природе, технике, быту.
- Охрана окружающей среды от химического загрязнения. Количественные характеристики загрязнения окружающей среды.
- Применение твердого и газообразного оксида углерода (IV).
- Защита озонового экрана от химического загрязнения.
- Грубодисперсные системы, их классификация и использование в профессиональной деятельности.
- Косметические гели.
- Применение суспензий и эмульсий в строительстве.
- Минералы и горные породы как основа литосферы.
- Растворы вокруг нас. Типы растворов.
- Вода как реагент и среда для химического процесса.
- Жизнь и деятельность С. Аррениуса.
- Вклад отечественных ученых в развитие теории электролитической диссоциации.
- Устранение жесткости воды на промышленных предприятиях.
- Серная кислота «хлеб химической промышленности».
- Использование минеральных кислот на предприятиях различного профиля.
- Оксиды и соли как строительные материалы.
- История гипса.
- Поваренная соль как химическое сырье.
- Многоликий карбонат кальция: в природе, в промышленности, в быту.
- Реакции горения на производстве и в быту.
- Виртуальное моделирование химических процессов.
- Электролиз растворов электролитов.
- Электролиз расплавов электролитов.
- Практическое применение электролиза: рафинирование, гальванопластика, гальваностегия.

Тематический план

Вид учебной работы	Профессии СПО	
Аудиторные занятия. Содержание обучения	Теоретические занятия	Лабораторные и практические занятия
Введение	2	
1. Органическая химия	112	36
1.1. Предмет органической химии. Теория строения органических соединений	8	2
1.2. Предельные углеводороды	12	4
1.3. Этиленовые и диеновые углеводороды	10	4
1.4. Ацетиленовые углеводороды	4	2
1.5. Ароматические углеводороды	6	2
1.6. Природные источники углеводородов	6	
1.7. Гидроксильные соединения	12	4
1.8. Альдегиды и кетоны	. 8	2
1.9. Карбоновые кислоты и их производные	12	4
1.10. Углеводы	10	4
1.11. Амины, аминокислоты, белки	10	4
1.12. Азотсодержащие гетероциклические соединения. Нуклеиновые кислоты.	6	2
1.13. Биологически активные соединения	8	2
2. Общая и неорганическая химия	126	34
2.1. Химия — наука о веществах	6	2
2.2. Строение атома	6	2
2.3. Периодический закон и Периодическая система химических элементов Д. И. Менделеева	6	
2.4. Строение вещества	10	
2.5. Полимеры	6	2
2.6. Дисперсные системы	4	2
2.7. Химические реакции	10	2
2.8. Растворы	14	6
2.9. Окислительно-восстановительные реакции. Электрохимические процессы	12	2
2.10. Классификация веществ. Простые вещества	10	2
2.11. Основные классы неорганических и органических соединений	12	2
2.12. Химия элементов	20	4
2.13. Химия в жизни общества	10	6
Итого	240	70
Промежуточная аттестация в форме экзамена		
Всего	240	70

ХАРАКТЕРИСТИКА ОСНОВНЫХ ВИДОВ УЧЕБНОЙ ДЕЯТЕЛЬНОСТИСТУДЕНТОВ

	ГИКА ОСНОВНЫХ ВИДОВ УЧЕБНОЙ ДЕЯТЕЛЬНОСТИСТУДЕНТОВ
Содержание	Характеристика основных видов деятельности студентов (на уровне
обучения	учебных действий)
Важнейшие	Умение давать определение и оперировать следующими химическими
химические	понятиями: вещество, химический элемент, атом, молекула,
понятия	относительные атомная и молекулярная массы, ион, аллотропия, изотопы,
	химическая связь, электроотрицательность, валентность, степень
	окисления, моль, молярная масса, молярный объем газообразных веществ,
	вещества молекулярного и немолекулярного строения, растворы,
	электролит и неэлектролит, электролитическая диссоциация, окислитель
	ивосстановитель, окисление и восстановление, тепловой эффект реакции,
	скорость химической реакции, катализ, химическое равновесие,
	углеродный скелет, функциональная группа, изомерия, гомология
Основные законы	Формулирование законов сохранения массы веществ и постоянства
химии	состава веществ. Установка причинно-следственной связи между
	содержанием этих законов и написанием химических формул и
	уравнений. Установка эволюционной сущности менделеевской и
	современной формулировок периодического закона Д. И. Менделеева.
	Объяснение физического смысла символики периодической таблицы
	химических элементов Д. И. Менделеева (номеров элемента, периода,
	группы) и установка причинно-следственной связи между строением
	атома и закономерностями изменения свойств элементов и образованных
	ими веществ в периодах и группах. Характеристика элементов малых и
	больших периодов по их положению в Периодической системе Д. И.
ti.	Менделеева
Основные теории	Установка зависимости свойств химических веществ от строения атомов
химий	образующих их химических элементов. Характеристика важнейших типов
	химических связей и относительности этой типологии. Объяснение
	зависимости свойств веществ от их состава и строения кристаллических
	решеток. Формулировка основных положений теории электролитической
	диссоциации и характеристика в свете этой теории свойств основных
	классов неорганических соединений. Формулировка основных положений
	теории химического строения органических соединений и характеристика
	в свете этой теории свойств основных классов органических соединений
Важнейшие	Характеристика состава, строения, свойств, получения и применения
вещества и	важнейших метаплов (IA и II А групп, алюминия, железа, а в естественно-
материалы	научном профиле и некоторых d-элементов) и их
-	соединений. Характеристика состава, строения, свойств, получения и
	применения важнейших неметаллов (VIII A, VIIA, VIA групп, а также
	азота и фосфора, углерода и кремния, водорода) и их соединений.
	Характеристика состава, строения, свойств, получения и применения
	важнейших классов углеводородов (алканов, циклоалканов, алкенов,
	алкинов, аренов) и их наиболее значимых в народнохозяйственном плане
	представителей. Аналогичная характеристика важнейших представителей
	других классов органических соединений: метанола и этанола, сложных
	эфиров, жиров, мыл, альдегидов (формальдегидов иацетальдегида),
	кетонов (ацетона), карбоновых кислот (уксусной кислоты, для
	естественно-научного профиля представителей других классов кислот),
	моносахаридов (глюкозы), дисахаридов (сахарозы), полисахаридов
	(крахмала и целлюлозы), анилина, аминокислот, белков, искусственных и
	синтетических волокон, каучуков, пластмасс.
Химический язык и	Использование в учебной и профессиональной деятельности химических
символика	терминов и символики. Название изученных веществ по тривиальной или
	международной номенклатуре и отражение состава этих соединений с
	помощью химических формул. Отражение химических процессов с
	помощью уравнений химических реакций
_	1 banera more received banerative

Химические	Объяснение сущности химических процессов. Классификация химических
реакции	реакций по различным признакам: числу и составу продуктов и реагентов,
]	тепловому эффекту, направлению, фазе, наличию катализатора,
	изменению степеней окисления элементов, образующих
	вещества. Установка признаков общего и различного в типологии реакций
	для неорганической и органической химии.
	Классификация веществ и процессов с точки зрения окисления-
	восстановления. Составление уравнений реакций с помощью метода
	электронного баланса. Объяснение зависимости скорости химической
	реакции и положения химического равновесия от различных факторов
Химический	Выполнение химического эксперимента в полном соответствии с
эксперимент	правилами безопасности. Наблюдение, фиксация и описание результатов
	проведенного эксперимента
Химическая	Проведение самостоятельного поиска химической информации с
информация	использованием различных источников (научно-популярных изданий,
	компьютерных баз данных, ресурсов Интернета). Использование
	компьютерных технологий для обработки и передачи химической
	информации и ее представления в различных формах
Расчеты по	Установка зависимости между качественной и количественной сторонами
химическим	химических объектов и процессов. Решение расчетных задач по
формулам	химическим формулам и уравнениям
и уравнениям	
Профильное и	Объяснение химических явлений, происходящих в природе, быту и на
профессионально	производстве. Определение возможностей протекания химических
значимое	превращений в различных условиях.Соблюдение правил экологически
содержание	грамотного поведения в окружающей среде. Оценка влияния химического
	загрязнения окружающей среды па организм человека и другие живые
	организмы. Соблюдение правил безопасного обращения с горючими и
	токсичными веществами, лабораторным оборудованием. Подготовка
	растворов заданной концентрации в быту и на производстве. Критическая
	оценка достоверности химической информации, поступающей из разных
	источников

ЛИТЕРАТУРА

ОСНОВНАЯ:

- 1. Габриелян О.С.. Химия для профессий и профессий естественно-научного профиля: учебникдля студ. учреждений сред.проф. образования / О.С. Габриелян, И.Г. Остроумов. М., Издательский центр «Академия», 2017.- 256 с.
- 2. Заяц Р.Г. Биология для колледжей: учебное пособие: общеобразовательная подготовка/Р.Г. Заяц, В. Э. Бутвиловский. Ростов н/Д: Феникс, 2017. 316 с.
- 3. Мамонтов С.Г. Общая биология: Учеб.для студентов средних спец. учеб. заведений / С.Г. Мамонтов, В.Б. Захаров. М.: Изд-во КноРус, 2017. 328 с.
- 4. Константинов В. М. Экологические основы природопользования: Учебник / В. М. Константинов, Ю. Б. Челидзе М.: Академия, 2017. 240 с.

дополнительная:

- 1. Габриелян О.С. Химия. Тесты, задачи и упражнения: учеб. пособие для студ. учреждений сред. проф. образования / О.С. Габриелян, Г.Г. Лысова М., Издательский центр «Академия», 2014.-336 с.
- 2. Габриелян О.С.. Химия для профессий и профессий естественно-научного профиля: учебник / О.С. Габриелян, И.Г. Остроумов. М., Издательский центр «Академия», 2010.- 256 с.
- 3.Габриелян О.С. Химия в тестах, задачах, упражнениях: учеб.пособие для студ. сред. проф. учебных заведений / О.С. Габриелян, Г.Г. Лысова М., Издательский центр «Академия», 2008.-224 с.
- 4. Ерохин Ю.М. Химия: учеб.для студ. сред. проф. учеб. заведений /Ю.М.Ерохин. М.: Издательский центр «Академия», 2011. 400 с.
- 5.Саенко О.Е.Химия. Технический профиль: учебник.- Ростов н/Дону: Феникс, 2013
- 6. Мамонтов С.Г. Общая биология: Учеб.для студентов средних спец. учеб. заведений / С.Г. Мамонтов, В.Б. Захаров. М.: Высш. шк., 2010. 317 с.
- 7. Сивоглазов В. И. Биология. Общая биология: базовый уровень,10-11класс /В. И. Сивоглазов, И.Б. Агафонова, Е. Т. Захарова. М.: Дрофа, 2014.
- 8. Сухорукова Л. Н. Биология (базовый уровень). 10-11 класс / Сухорукова Л. Н., Кучменко В. С., Иванова Т.В. М. 2014.
- 2. Валова (Копылова), В. Д. Экология [Электронный ресурс]: Учебник / В. Д. Валова (Копылова).- М.: Издательско-торговая корпорация «Дашков и К°», 2012. 360 с.
- 3. Коробкин В. И. Экология в вопросах и ответах: учеб.пособие / В. И. Коробкин, Л. В. Передельский Ростов н/Д.: Феникс, 2011. 384 с.
- 4. Марфенин Н.Н. Экология и концепция устойчивого развития. М., 2013.
- 5. Миркин Б.М. Экология (базовый уровень). 10 —11 классы/Б.М. Миркин, Л.Г.Наумова, С. В.Суматохин— М.: Изд-во Вентана-Граф., 2014. 400 с.
- 6. Пивоваров Ю.П. Экология и гигиена человека: учебник для студ. учреждений сред.проф. образования /Ю.П. Пивоваров, В. В.Королик, Л.Г.Подунова— М., 2014.
- 7. Тупикии Е.И. Общая биология с основами экологии и природоохранной деятельности: учебник для студ. учреждений сред.проф. образования. М., 2014.
- 8. Чернова Н.М.Экология (базовый уровень). 10 11 классы./Н.М.Чернова, В.М.Галушин, В.М. Константинов—— М., 2014.

ИНТЕРНЕТ-РЕСУРСЫ

- 1.www. hemi.wallst.ru(Образовательный сайт для школьников «Химия»).
- 2. www.alhimikov.net(Образовательный сайт для школьников).
- 3. www.chem.msu.su(Электронная библиотека по химии).
- 4.www. sbio.info (Вся биология.Современная биология, статьи, новости, библиотека).
- 5. www.window.edu.ru (Единое окно доступа к образовательным ресурсам Интернета по биологии)
- 6.www.biology.ru (Биология в Открытом колледже. Сайт содержит электронный учебник по биологии, On-line тесты)
- 7.www.informika.ru (Электронный учебник, большой список интернет-ресурсов).
- 8. www.ecologysite.ru (Каталог экологических сайтов).
- 9. www.ecoculture.ru (Сайт экологического просвещения).
- 10. www. есосоттипity. ги (Информационный сайт, освещающий проблемы экологии России).